Connect with us

Công nghệ

Pluralsight tiết lộ: Xu hướng đột phá định hình công nghệ 2025 (Phần 1)

Published

on

Kỹ năng công nghệ thông tin (IT) không tồn tại lâu dài – chỉ kéo dài vỏn vẹn hai năm rưỡi, theo nghiên cứu trong ngành. Và với những tiến bộ trong trí tuệ nhân tạo (AI) và tự động hóa, khoảng thời gian này đang ngày càng thu hẹp lại. Gần ba trong bốn chuyên gia IT (74%) lo ngại rằng những tiến bộ này sẽ khiến kỹ năng hàng ngày của họ trở nên lỗi thời, theo Báo cáo Kỹ năng AI 2024 của Pluralsight.

Liệu những nỗi sợ này có vô căn cứ? Không hẳn vậy. 35% các nhà điều hành cho biết họ có kế hoạch đầu tư vào công cụ và công nghệ AI để “loại bỏ các vị trí không cần thiết”. Chìa khóa là phải được xem là cần thiết – và điều đó đòi hỏi việc liên tục cập nhật kỹ năng của bạn.

Để giúp bạn quyết định nên học gì tiếp theo, nghiên cứu là rất quan trọng: các công ty đang tuyển dụng những gì, những người khác trong lĩnh vực của bạn đang học gì, và các chuyên gia trong ngành đang nói gì về những xu hướng hàng đầu hiện nay.

Chúng tôi đã thực hiện nghiên cứu đó cho bạn. Đối với báo cáo này, chúng tôi đã khảo sát cơ sở dữ liệu gồm hơn 50.000 người học công nghệ, phỏng vấn hơn 3.000 nhà điều hành và chuyên gia công nghệ, và trao đổi với các chuyên gia hàng đầu trong lĩnh vực để khám phá những xu hướng, công cụ và kỹ năng công nghệ hàng đầu mà bạn cần biết để thành công trong năm 2025.

Điểm nổi bật trong Dự báo Công nghệ 2025

Điều không gây ngạc nhiên cho bất kỳ ai không sống dưới tảng đá là AI sẽ tiếp tục đóng vai trò trung tâm vào năm 2025, với tác động lan tỏa khắp các lĩnh vực (và thị trường việc làm). Bạn sẽ muốn tìm hiểu sâu hơn trong các phần tiếp theo để biết thêm chi tiết và các kỹ năng cần thiết để thành công trong năm tới, nhưng đây là một số điểm quan trọng nhất từ Dự báo Công nghệ 2025:

• Chỉ có 12% chuyên gia IT có kinh nghiệm đáng kể làm việc với AI, và bốn trong năm dự án AI thất bại do thiếu kiến thức và chuẩn bị nội bộ.

• Để giúp các dự án AI thành công và giảm rủi ro, các công ty sẽ tìm kiếm chuyên gia về AI, dữ liệu, an ninh mạng và cơ sở hạ tầng.

• Một số kỹ năng hàng đầu cần có vào năm 2025? Kiến thức về AI Agents, LangChain, Kubernetes, và ít nhất một dịch vụ đám mây (AWS, Azure).

• Trong lĩnh vực phát triển phần mềm, việc tìm kiếm công việc ở cấp độ mới vào nghề sẽ trở nên khó khăn hơn, nhưng các chuyên gia có kỹ năng cao sẽ dễ dàng tìm được việc làm hơn.

STT Tiếng Việt Tiếng Anh
1 Trí tuệ nhân tạo AI
2 Python Python
3 Điện toán đám mây (Azure, AWS) Cloud (Azure, AWS)
4 C# C#
5 Angular Angular
6 Kubernetes Kubernetes
7 Java Java
8 React React
9 Docker Docker
10 Power BI Power BI
11 SQL SQL
12 JavaScript JavaScript
13 Terraform Terraform
14 C C
15 DevOps DevOps
16 GIT GIT
17 PowerShell PowerShell
18 Kafka Kafka
19 Blazor Blazor
20 Phát triển phần mềm Software development

Dự đoán công nghệ toàn cầu

Năm 2025, các dự án AI sẽ thúc đẩy nhu cầu mạnh mẽ đối với các chuyên gia về AI, dữ liệu, an ninh mạng và cơ sở hạ tầng

Vào tháng 11 năm 2022, công chúng bắt đầu nhận thức về AI tạo sinh với sự ra đời của ChatGPT. Kể từ đó, các tổ chức thuộc mọi quy mô đã và đang nỗ lực triển khai công nghệ AI. Theo Báo cáo Kỹ năng AI 2024 của Pluralsight, 20% tổ chức cho biết họ đã chính thức triển khai các công nghệ và công cụ liên quan đến AI, trong khi 55% dự định sẽ làm như vậy trong tương lai gần.

Are organizations deploying AI technologies?

55%
20%
25%
Plan to deploy AI
Already deployed AI
Don’t plan to deploy AI

Lưu ý: Các công nghệ liên quan đến AI bao gồm học máy (machine learning), tự động hóa (automation), AI tạo sinh (gen AI), v.v.

  1. Các dự án AI có tỷ lệ thất bại cao

Hơn 80% dự án AI thất bại, gấp đôi so với các dự án CNTT khác. 30% không vượt qua được giai đoạn chứng minh khái niệm. Nguyên nhân chính là thiếu sự chuẩn bị, kiến thức về AI và DataOps, cũng như đầu tư vào cơ sở hạ tầng.

  1. Dự án AI đòi hỏi nhân tài đa chức năng liên tục

Dự án AI không chỉ cần kỹ năng AI, mà còn cần nhân viên có trình độ cao về dữ liệu, an ninh mạng, cơ sở hạ tầng (thường là đám mây) và quản lý thay đổi. Nhiều tổ chức giờ đây nhận ra họ cần nhân viên lành nghề đảm nhận các chức năng này một cách liên tục để dự án AI thành công.

  1. Dự án AI không bao giờ kết thúc

Việc đào tạo và triển khai giải pháp AI chỉ là bước khởi đầu, với nhu cầu liên tục về khái niệm và dữ liệu trôi, tuân thủ, R&D, quản lý chi phí, giám sát và các yếu tố khác.

Đây là cơ hội vàng cho các chuyên gia IT thông thạo

Tại sao? Tất cả những vấn đề này có thể được giải quyết bằng cách có những người am hiểu các kỹ năng phù hợp, và có khả năng giao tiếp và làm việc với các nhà lãnh đạo trong các dự án này. Nói một cách đơn giản, những điều này quy về bốn loại “nhà vô địch” mà các tổ chức sẽ tìm kiếm vào năm 2025. Đó là:

STT Tiếng Việt Tiếng Anh
1 Nhà vô địch AI AI champions
2 Nhà vô địch dữ liệu Data champions
3 Nhà vô địch an ninh mạng Cybersecurity champions
4 Nhà vô địch cơ sở hạ tầng Infrastructure champions

Dù AI chỉ là một mảnh ghép trong bức tranh công nghệ tổng thể, chúng tôi dự báo rằng các cuộc thảo luận xoay quanh việc tìm nguồn lực, triển khai và duy trì các dự án AI sẽ là tâm điểm chú ý của các nhà lãnh đạo cấp cao trong năm 2025. Những cuộc đối thoại này sẽ tạo ra hiệu ứng domino, ảnh hưởng đến nhiều lĩnh vực khác như an ninh mạng, kỹ thuật phần mềm, dữ liệu, kỹ thuật đám mây và các ngành liên quan, từ đó tác động đến cách phân bổ ngân sách và kỳ vọng về kỹ năng nhân sự.

AI agents sẽ là yếu tố gây đột phá đáng kể trong lĩnh vực công nghệ, đặc biệt là trong tự động hóa công việc

Chúng tôi dự đoán rằng vào năm 2025, yếu tố gây đột phá lớn nhất trong công nghệ nói chung sẽ là việc áp dụng AI agents. Agents là những thực thể AI có khả năng thực hiện các tác vụ phức tạp cụ thể mà không cần sự can thiệp của con người. Tại sao điều này lại hữu ích? Bạn có thể sử dụng các agents này để tự động hóa một lượng lớn công việc bận rộn với tư cách là một chuyên gia, chẳng hạn như:

STT Tiếng Việt Tiếng Anh
1 Tìm kiếm và truy xuất dữ liệu từ internet Searching and fetching data from the internet
2 Gọi API Calling APIs
3 Hỗ trợ phát triển phần mềm và xây dựng cơ sở hạ tầng Aiding with software development and infrastructure construction
4 Tạo báo cáo từ các nguồn khác nhau Creating reports from different sources
5 Giám sát hệ thống Monitoring systems
6 Theo dõi công việc với đồng nghiệp Following up with colleagues about certain tasks
7 Cập nhật tài liệu Updating documentation

Đây đều là những nhiệm vụ thiết yếu, thường chiếm phần lớn thời gian của một chuyên gia, bất kể họ làm việc trong lĩnh vực nào. Trong năm 2024, Pluralsight ghi nhận sự bùng nổ về mối quan tâm đối với trợ lý AI trong cộng đồng học viên công nghệ trên nền tảng của họ. Đồng thời, các chuyên gia cũng báo cáo về sự chú ý ngày càng tăng của giới lãnh đạo doanh nghiệp đối với công nghệ này.

“Trong 12 tháng qua, tôi đã chứng kiến sự tăng trưởng về mối quan tâm đối với các tác nhân AI. Vào năm 2025 và xa hơn nữa, tôi tin rằng công nghệ tác nhân AI sẽ được sử dụng trong nhiều lĩnh vực công nghệ, từ phát triển phần mềm đến tự động hóa cơ sở hạ tầng và các quy trình kinh doanh.”

Steve Buchanan

Steve Buchanan

Quản lý PM chính tại Microsoft và tác giả sách công nghệ

Trong số các công nghệ tác nhân AI, LangChain có khả năng trở thành kỹ năng nóng cần học

LangChain là một framework phần mềm dựa trên Python mà bạn có thể sử dụng để phát triển các ứng dụng được hỗ trợ bởi các mô hình ngôn ngữ lớn (LLMs). LangChain cho phép bạn tạo ra các tác nhân sử dụng LLMs để thực hiện các nhiệm vụ cụ thể. Các tác nhân trong LangChain có thể phản hồi linh hoạt với các truy vấn của người dùng, tìm kiếm thông tin qua tài liệu, và thực hiện nhiệm vụ bằng cách kết nối nhiều cuộc gọi LLM, công cụ, hoặc API. Chúng được thiết kế đặc biệt để tự động hóa và xử lý các tác vụ suy luận đa bước bằng cách “xâu chuỗi” các hành động lại với nhau.

LangChain cũng là một framework linh hoạt để tạo ra các ứng dụng GenAI phức tạp một cách dễ dàng hơn, khiến nó trở thành một khoản đầu tư xứng đáng cho các nhà phát triển được giao nhiệm vụ tạo ra giao diện thân thiện với người dùng cho AI.

Trên nền tảng Pluralsight, số lượng người học công nghệ quan tâm đến LangChain đã tăng 167% trong năm 2024, và hiện nằm trong top 200 thuật ngữ được tìm kiếm nhiều nhất của chúng tôi.

“Các tác nhân LangChain có khả năng tạo ra sự đột phá trong ngành công nghiệp. Tuy nhiên, theo ý kiến của tôi, hiện tại đang có một khoảng cách về kiến thức, điều này làm chậm quá trình áp dụng. Tôi đã thành công trong việc tự động hóa 80% các công việc quản lý được giao cho tôi, chẳng hạn như giám sát hệ thống theo dõi lỗi, theo dõi tiến độ với các nhà phát triển phụ trách sửa lỗi, cập nhật trang wiki, và tạo báo cáo Power BI từ các nguồn dữ liệu khác nhau.”

Laurentiu Raducu

Laurentiu Raducu

Nhà sáng lập bitheap.tech và chuyên gia về dữ liệu và bảo mật

Những điểm cần lưu ý chung

Đây là những bước bạn nên thực hiện vào năm 2025 để chuẩn bị cho các xu hướng này:

  1. Bất kể vai trò của bạn là gì, hãy có một hiểu biết nền tảng về AI – không chỉ đơn thuần là biết cách sử dụng chatbot. Bạn không cần trở thành người triển khai AI, nhưng việc biết về nó và những gì nó có thể làm (và không thể làm) là rất quan trọng.
  2. Nếu bạn đang làm việc trong lĩnh vực AI, hãy nhấn mạnh nhu cầu về các chuyên gia dữ liệu, an ninh mạng và cơ sở hạ tầng để đảm bảo sự thành công liên tục của dự án.
  3. Nếu bạn làm việc trong lĩnh vực dữ liệu, an ninh mạng hoặc đám mây/cơ sở hạ tầng, hãy nghiên cứu về AI. Thể hiện cách kỹ năng của bạn cần thiết để đảm bảo bất kỳ dự án AI nào của công ty đều thành công.
  4. Tìm hiểu cách LangChain hoặc các công nghệ dựa trên tác nhân tương tự có thể được sử dụng để cải thiện vai trò của bạn. Đồng thời, lưu ý rằng “AI Agents” hiện đang trải qua một chu kỳ bùng nổ: không phải tất cả các tác nhân được gọi là như vậy đều ngang hàng, và giống như AI washing, có những báo cáo về “agent washing” đang diễn ra.

(“AI washing” và “agent washing” là hai thuật ngữ liên quan đến việc sử dụng sai lệch hoặc phóng đại công nghệ AI trong marketing và quảng cáo sản phẩm.)

Do nội dung bài viết này khá dài và phong phú, chúng tôi đã quyết định chia nó thành hai phần để đảm bảo việc đọc và tiếp nhận thông tin được thuận lợi nhất.

Hết phần 1.

Dieter R., Nguồn: pluralsight.com

Công nghệ

Tìm hiểu về OpenAI o3: Khám phá mô hình AI tiên tiến nhất

Published

on

OpenAI o3 nổi bật như một mô hình AI có khả năng lập luận mạnh mẽ nhất từ trước đến nay. Mô hình này thể hiện xuất sắc trong việc giải quyết các bài toán phức tạp và đã đạt thành tích ấn tượng với độ chính xác 91,6% trong Kỳ thi Toán học American Invitational Mathematics Examination (AIME) 2025.

Năng lực của o3 bao trùm nhiều lĩnh vực từ lập trình, toán học, khoa học cho đến nhận thức thị giác. So với phiên bản tiền nhiệm, mô hình này giảm 20% lỗi nghiêm trọng trong các tác vụ nền tảng, mặc dù tiêu tốn gấp 10 lần tài nguyên tính toán.

OpenAI o3 thể hiện bước tiến vượt bậc so với các mô hình tiền nhiệm. Kể từ ngày ra mắt 16 tháng 4 năm 2025, mô hình O-series mới nhất này áp dụng cơ chế lập luận mô phỏng, cho phép nó “suy ngẫm” trước khi đưa ra phản hồi. ChatGPT o3 tích hợp liền mạch nhiều công cụ, tạo nên trải nghiệm đa dạng. Mô hình này có khả năng tự quyết định thời điểm sử dụng tìm kiếm web và phân tích dữ liệu Python. Phiên bản o3 đầy đủ mang đến khả năng lập luận toàn diện nhất với với cửa sổ ngữ cảnh khổng lồ lên tới 200.000 token, trong khi các biến thể nhỏ gọn hơn sẽ được ra mắt trong tương lai.

Hãy cùng tìm hiểu những đặc điểm nổi bật của o3, từ khả năng lập luận trực quan đến vai trò của nó trong Khung Chuẩn bị mới “Preparedness Framework” của OpenAI. Mô hình này đánh dấu một bước tiến quan trọng khi là mô hình AI đầu tiên tích hợp các tính năng an toàn như cơ chế sắp xếp có chủ đích – một bước đột phá trong việc phát triển AI có trách nhiệm.

Video Tutorial: OpenAI o3 và o4-mini – Bước tiến mới trong AI

OpenAI o3 là gì và nó khác biệt như thế nào?

OpenAI o3 đánh dấu một bước nhảy vọt trong lĩnh vực trí tuệ nhân tạo, Ra mắt vào ngày 16 tháng 4 năm 2025, o3 là một phần trong dòng mô hình lập luận chuyên sâu của OpenAI. Trong khi các mô hình ngôn ngữ truyền thống chủ yếu tập trung vào việc tạo ra văn bản tổng quát, dòng o-series lại đi theo một hướng khác biệt. Mục tiêu của nó là nâng cao khả năng lập luận, tạo nên sự khác biệt rõ rệt so với các mô hình GPT quen thuộc của OpenAI.

Sự phát triển từ o1 đến o3

OpenAI lần đầu tiên tiết lộ o1 (tên mã “Strawberry”) vào tháng 9 năm 2024. Công ty đã mở rộng quyền truy cập o1 cho nhiều người hơn vào ngày 5 tháng 12 năm 2024. Chỉ hai tuần sau, họ đã xem trước o3 trong sự kiện ’12 Ngày Shipmas’ của họ. Tiến độ nhanh chóng này cho thấy sự cống hiến kiên định của họ đối với khả năng lập luận tốt hơn.

Những cải tiến rất ấn tượng. O3 mắc ít hơn 20% lỗi lớn so với o1 khi xử lý các nhiệm vụ thực tế khó khăn. Nó thực sự tỏa sáng trong lập trình, tư vấn kinh doanh và sáng tạo ý tưởng. Nhìn vào các thước đo cụ thể, o3 đạt độ chính xác 69,1% trong bài kiểm tra lập trình Verified SWE-bench, vượt trội hơn phiên bản tiền nhiệm. Mô hình này cũng đạt điểm ấn tượng 87,7% trong bài kiểm tra GPQA Diamond cho các vấn đề khoa học cấp độ chuyên gia.

Lý do OpenAI bỏ qua phiên bản o2

Bạn có thể nhận thấy không có mô hình OpenAI o2. Công ty đã nhảy thẳng từ o1 sang o3 vì vấn đề thương hiệu—”O2″ thuộc về một công ty viễn thông Anh do Telefonica UK điều hành. Sam Altman, CEO của OpenAI, nói rằng họ đã đưa ra lựa chọn này “vì sự tôn trọng” đối với Telefonica. Quyết định đặt tên này thực sự đã giúp OpenAI bằng cách làm cho mô hình có vẻ tiên tiến hơn.

Lập luận mô phỏng (Simulated reasoning) đối đầu với các mô hình ngôn ngữ lớn truyền thống

O3 hoạt động khác với các mô hình ngôn ngữ lớn truyền thống. GPT-4 và các mô hình tương tự xuất sắc trong các tác vụ ngôn ngữ chung và nhận dạng mẫu. Tuy nhiên, O3 sử dụng lập luận mô phỏng thay đổi toàn bộ cách tiếp cận xử lý thông tin của nó.

Lập luận mô phỏng này cho phép o3 dừng lại và suy nghĩ về quá trình tư duy nội tại của nó trước khi phản hồi—tương tự như cách con người suy nghĩ. Mô hình chia các vấn đề lớn thành các phần nhỏ hơn và khám phá các cách tiếp cận khác nhau. Nó kiểm tra lập luận của chính mình trước khi đưa ra câu trả lời. Cách tiếp cận này khác với các mô hình ngôn ngữ lớn thông thường chủ yếu sử dụng nhận dạng mẫu và dự đoán.

O3 suy nghĩ cẩn thận hơn về các thách thức phức tạp cần tư duy phân tích sâu sắc. Mô hình hoạt động tốt hơn trong toán học, lập trình và lập luận khoa học. Cách tiếp cận thận trọng này dẫn đến độ chính xác cao hơn trên các vấn đề khó, mặc dù mất nhiều thời gian hơn một chút để phản hồi.

OpenAI o3 and o3-mini—12 Days of OpenAI: Day 12

Hiểu về o3-mini và o4-mini

Sự phát triển của các mô hình lập luận của OpenAI dẫn đến các phiên bản hiệu quả được thiết kế để tiết kiệm chi phí và ứng dụng chuyên biệt. Những mô hình “mini” này cung cấp khả năng ấn tượng trong khi giữ yêu cầu tính toán thấp hơn và thời gian phản hồi nhanh hơn.

o3-mini là gì?

OpenAI đã cho ra mắt o3-mini vào ngày 31 tháng 1 năm 2025, đánh dấu sự xuất hiện của mô hình lập luận nhỏ gọn đầu tiên của họ. Mô hình này đáp ứng các tính năng được nhà phát triển yêu cầu nhiều nhất, bao gồm khả năng gọi hàm, Structured Outputs, và developer messages. Là một giải pháp thay thế tiết kiệm chi phí cho mô hình o3 đầy đủ, o3-mini thể hiện xuất sắc trong các lĩnh vực STEM—đặc biệt mạnh mẽ trong khoa học, toán học và lập trình—đồng thời duy trì độ trễ thấp hơn.

Các chuyên gia thử nghiệm nhận thấy o3-mini tạo ra câu trả lời chính xác và rõ ràng hơn so với o1-mini, với 56% thời gian họ ưu tiên chọn phản hồi từ o3-mini. Mô hình này giảm 39% lỗi nghiêm trọng (major errors) khi xử lý các câu hỏi nền tảng khó so với o1-mini. Thời gian phản hồi cũng được cải thiện đáng kể, nhanh hơn 24% so với o1-mini, trung bình chỉ mất 7,7 giây so với 10,16 giây của phiên bản tiền nhiệm.

Giải thích về o3-mini-low, medium và high

Ba biến thể của o3-mini tồn tại dựa trên nỗ lực lập luận: thấp, trung bình và cao. Các nhà phát triển có thể tối ưu hóa cho các trường hợp sử dụng cụ thể—chọn quá trình suy nghĩ sâu hơn cho các vấn đề phức tạp hoặc ưu tiên tốc độ khi độ trễ quan trọng.

O3-mini phù hợp với hiệu suất của o1 trong các đánh giá lập luận và trí thông minh đầy thách thức với nỗ lực lập luận trung bình, bao gồm AIME và GPQA. Các tùy chọn lập luận cao cung cấp khả năng phân tích cải thiện với chi phí thời gian phản hồi hơi lâu hơn. Vì vậy, tất cả người dùng ChatGPT trả phí đều nhận được quyền truy cập vào cả o3-mini (sử dụng lập luận trung bình theo mặc định) và o3-mini-high trong bộ chọn mô hình.

Phiên bản 1 (Dịch sát nghĩa):

O4-mini là gì và nó so sánh với o3-mini như thế nào

OpenAI đã phát hành o4-mini cùng với o3 vào ngày 16 tháng 4 năm 2025, như một mô hình nhỏ hơn được tối ưu hóa cho lập luận nhanh và tiết kiệm chi phí. Mô hình nhỏ gọn này thể hiện hiệu suất đáng chú ý cho kích thước của nó và xuất sắc trong các nhiệm vụ toán học, lập trình và thị giác.

O4-mini vượt trội hơn o3-mini trong cả các nhiệm vụ STEM và phi STEM trong các đánh giá của chuyên gia, bao gồm các lĩnh vực khoa học dữ liệu. Phản hồi của người dùng cho thấy kết quả hỗn hợp—o4-mini cung cấp thông lượng cao hơn và giới hạn sử dụng cao hơn so với o3, nhưng một số người dùng báo cáo vấn đề với việc tạo mã và tính nhất quán so với o3-mini-high.

O4-mini có các biến thể lập luận tiêu chuẩn và cao, với phiên bản cao mất nhiều thời gian hơn để tạo ra câu trả lời có khả năng đáng tin cậy hơn.

Các khả năng chính của o3

O3 của OpenAI nổi bật so với các mô hình AI truyền thống với những khả năng đột phá. Mô hình học thông qua học tăng cường quy mô lớn và thể hiện kỹ năng đáng chú ý trên nhiều lĩnh vực. Điều này khiến nó trở thành một công cụ mạnh mẽ để giải quyết các vấn đề phức tạp.

Lập luận nâng cao và chuỗi suy nghĩ

OpenAI đã huấn luyện mô hình o3 để “suy nghĩ” trước khi đưa ra câu trả lời thông qua cái mà họ gọi là “chuỗi tư duy riêng tư”. Mô hình này lập kế hoạch trước và lập luận thông qua các nhiệm vụ bằng cách thực hiện các bước suy luận trung gian để giải quyết vấn đề. O3 có khả năng phân tích các thách thức phức tạp và cân nhắc nhiều phương pháp tiếp cận khác nhau. Nó tự đánh giá quá trình lập luận của mình trước khi đưa ra câu trả lời cuối cùng. Mặc dù quá trình này đòi hỏi nhiều sức mạnh tính toán hơn và mất nhiều thời gian hơn để phản hồi, nhưng kết quả đầu ra lại chính xác hơn đáng kể.

Visual reasoning: suy nghĩ bằng hình ảnh

Một trong những bước đột phá lớn nhất của o3 là biết cách lập luận với hình ảnh trực tiếp trong chuỗi suy nghĩ của nó. Mô hình không chỉ nhìn thấy hình ảnh – nó suy nghĩ với chúng. O3 làm việc với hình ảnh do người dùng tải lên bằng cách sử dụng các công cụ khác nhau. Nó cắt, phóng to, xoay và áp dụng các kỹ thuật xử lý khác. Điều này giúp o3 phân tích hình ảnh mờ, đảo ngược hoặc chất lượng thấp. Tính năng này chứng tỏ giá trị trong việc giải thích bảng trắng (whiteboards), sơ đồ sách giáo khoa hoặc phác thảo vẽ tay (hand-drawn sketches).

Sử dụng công cụ: duyệt web, lập trình, phân tích tệp

O3 kết hợp lập luận tiên tiến với các khả năng công cụ chi tiết. Bao gồm duyệt web, lập trình Python, phân tích hình ảnh, xử lý tệp và các tính năng bộ nhớ. Các công cụ không chỉ có sẵn – o3 biết chính xác khi nào và cách sử dụng chúng trong quá trình lập luận. Ví dụ, xem cách nó tìm kiếm dữ liệu tiện ích trên web, viết mã Python để dự báo và tạo biểu đồ giải thích – tất cả trong một tương tác.

Tự kiểm tra sự thật và tính năng bộ nhớ

O3 sử dụng sự sắp xếp có cân nhắc để lập luận về các chính sách an toàn khi nó phản hồi các lời nhắc có khả năng không an toàn. Tự kiểm tra sự thật tích hợp giúp phản hồi chính xác hơn. Mô hình cũng nhớ các chi tiết hữu ích giữa các cuộc trò chuyện. Điều này dẫn đến các phản hồi được tùy chỉnh và phù hợp.

Performance trong toán học, lập trình và khoa học

O3 cho thấy kết quả đặc biệt xuất sắc trong các lĩnh vực kỹ thuật:

  • Toán học: Độ chính xác 91,6% trên AIME 2024 (so với 74,3% của o1)
  • Lập trình: Độ chính xác 69,1% trên SWE-bench Verified (so với 48,9% của o1)
  • Khoa học: Độ chính xác 83,3% trên thước đo GPQA Diamond

Safety, access, and pricing

OpenAI đang dẫn đầu trong việc triển khai an toàn và có trách nhiệm các mô hình lập luận của mình. Tài liệu an toàn mới nhất của họ cho thấy cách o3 và o4-mini áp dụng nhiều lớp bảo vệ, vừa ngăn chặn việc sử dụng sai mục đích, vừa hỗ trợ các ứng dụng có ích.

Deliberative alignment: Phương pháp an toàn mới

OpenAI đã phát triển phương pháp sắp xếp có chủ đích – một kỹ thuật an toàn đột phá giúp các mô hình lập luận hiểu trực tiếp các thông số kỹ thuật an toàn do con người viết. Khác với các phương pháp cũ, nơi các mô hình học hành vi mong muốn từ các ví dụ được gắn nhãn, o3 giờ đây có thể suy ngẫm về các thông số này trước khi đưa ra câu trả lời.

Cách tiếp cận này giúp o3 vượt trội hơn GPT-4o trong việc đáp ứng các tiêu chuẩn an toàn nội bộ và bên ngoài. Nó giảm thiểu các kết quả có hại và tránh việc từ chối không cần thiết đối với nội dung an toàn. Đây là một bước tiến vượt bậc so với các phương pháp an toàn truyền thống chỉ dựa vào đào tạo từ các ví dụ.

Preparedness Framework v2

Khung Chuẩn bị phiên bản 2 của OpenAI giờ đây xem xét năm tiêu chí rủi ro: tính khả thi, khả năng đo lường, mức độ nghiêm trọng, tính mới hoàn toàn và liệu rủi ro xảy ra tức thì hay không thể khắc phục.

Khung này đặt ra hai ngưỡng rõ ràng – Khả năng cao và Khả năng quan trọng – kèm theo các cam kết hoạt động cụ thể. O3 và o4-mini đã trải qua đánh giá trong ba lĩnh vực: mối đe dọa sinh học/hóa học, an ninh mạng và khả năng tự cải thiện của AI. Cả hai mô hình đều duy trì dưới ngưỡng ‘Cao’ của khung trong mọi hạng mục.

Cách truy cập o3 và o4-mini thông qua ChatGPT

Người dùng ChatGPT Plus, Pro và Team có thể truy cập o3, o4-mini và o4-mini-high trực tiếp từ bộ chọn mô hình. Người dùng Enterprise và Edu được truy cập một tuần sau khi phát hành ban đầu. Mỗi cấp độ đăng ký có giới hạn khác nhau:

  • Plus, Team, Enterprise & Edu: 100 tin nhắn hàng tuần với o3, 300 tin nhắn hàng ngày với o4-mini và 100 tin nhắn hàng ngày với o4-mini-high
  • Pro: Truy cập gần như không giới hạn (tùy thuộc vào các biện pháp bảo vệ tự động)
  • Miễn phí: Truy cập giới hạn vào o4-mini bằng cách chọn ‘Think’ trong trình soạn thảo

Giá API và giới hạn sử dụng

Các nhà phát triển có thể sử dụng o3 qua API với giá 254.148,34 VND cho mỗi triệu token đầu vào và 1.016.593,35 VND cho mỗi triệu token đầu ra. O4-mini có giá thấp hơn ở mức 27.956,32 VND cho mỗi triệu token đầu vào và 111.825,27 VND cho mỗi triệu token đầu ra. Người dùng cần xác minh tổ chức ở cấp độ 1-3 để truy cập o3, trong khi tất cả người dùng đã xác minh có thể sử dụng o4-mini. Cả hai mô hình đều hoạt động với cửa sổ ngữ cảnh 200k token và có thể xuất ra tối đa 100k token, điều này cung cấp nhiều không gian cho các tác vụ lập luận phức tạp.

Tìm hiểu về OpenAI o3: Khám phá mô hình AI tiên tiến nhất

Kết luận

OpenAI o3 đánh dấu một bước ngoặt quan trọng trong lịch sử phát triển AI, khi nó vượt xa khỏi việc đơn thuần so khớp mẫu để hướng tới khả năng lập luận đích thực. Những mô hình này hứa hẹn sẽ phát triển khả năng giải quyết vấn đề ngày càng tinh vi, đi kèm với các biện pháp an toàn được cải thiện. Dòng o chứng minh rằng tương lai của AI không nằm ở việc tạo ra các phản hồi đơn thuần, mà là ở khả năng lập luận thấu đáo trước những vấn đề phức tạp

Câu hỏi thường gặp

C1. Các tính năng chính của mô hình o3 của OpenAI là gì? OpenAI o3 là một mô hình AI tiên tiến sử dụng lập luận mô phỏng để xuất sắc trong các nhiệm vụ giải quyết vấn đề phức tạp. Nó có thể tạm dừng và suy ngẫm trước khi phản hồi, có khả năng lập luận trực quan và tích hợp các công cụ khác nhau như tìm kiếm web và lập trình Python. Mô hình cũng có các biện pháp an toàn nâng cao và cửa sổ ngữ cảnh khổng lồ 200.000 token.

C2. O3 so sánh như thế nào với các mô hình AI trước đây về mặt hiệu suất? O3 thể hiện những cải tiến đáng kể so với các phiên bản tiền nhiệm, mắc ít hơn 20% lỗi lớn trong các nhiệm vụ thực tế khó khăn. Nó đạt độ chính xác 91,6% trên AIME 2025, 69,1% độ chính xác trên điểm chuẩn lập trình SWE-bench Verified, và 87,7% trên điểm chuẩn GPQA Diamond cho các vấn đề khoa học cấp độ chuyên gia.

C3. O3-mini và o4-mini là gì, và chúng khác với mô hình o3 đầy đủ như thế nào? O3-mini và o4-mini là các phiên bản tinh gọn của mô hình o3, được thiết kế để tiết kiệm chi phí và ứng dụng chuyên biệt. Chúng cung cấp khả năng ấn tượng với yêu cầu tính toán thấp hơn và thời gian phản hồi nhanh hơn. O3-mini có các biến thể nỗ lực lập luận thấp, trung bình và cao, trong khi o4-mini được tối ưu hóa cho lập luận nhanh, tiết kiệm chi phí.

C4. Người dùng có thể truy cập các mô hình o3 và o4-mini như thế nào? Người dùng ChatGPT Plus, Pro, Team và Enterprise có thể truy cập o3, o4-mini và o4-mini-high thông qua bộ chọn mô hình. Giới hạn sử dụng thay đổi theo cấp độ đăng ký. Đối với các nhà phát triển, cả hai mô hình đều có sẵn thông qua API với cấu trúc giá khác nhau. Người dùng miễn phí có quyền truy cập hạn chế vào o4-mini bằng cách chọn ‘Think’ trong trình soạn thảo.

C5. Các biện pháp an toàn nào được triển khai trong mô hình o3? O3 kết hợp một phương pháp an toàn mới gọi là sắp xếp có cân nhắc, dạy mô hình lập luận rõ ràng về các thông số kỹ thuật an toàn. Nó cũng có khả năng tự kiểm tra sự thật và được đánh giá theo Khung Chuẩn bị v2 cập nhật của OpenAI, đánh giá rủi ro trên các tiêu chí khác nhau để đảm bảo triển khai AI có trách nhiệm.

Dieter R.

Continue Reading

Công nghệ

Khóa học AI tạo sinh 5 ngày: Livestream Ngày 1

Published

on

Chào bạn đến với khóa học AI tạo sinh 5 ngày độc đáo. Khóa học được tổ chức bởi Google trên nền tảng Kaggle. Đây là một cơ hội hiếm có để học hỏi trực tiếp từ các chuyên gia hàng đầu của Google. Đặc biệt là từ đội ngũ Google DeepMind.

Nội dung chính

Khóa Học AI Tạo Sinh 5 Ngày: Livestream Ngày 1

Paige Bailey sẽ thảo luận về các bài tập với các tác giả khóa học. Bên cạnh đó có những khách mời đặc biệt khác từ Google. Khách mời hôm nay bao gồm Warren Barkley, Logan Kilpatrick, Kieran Milan, Anant Nawalgaria, Irina Sigler và Mat Velloso.

Video có phụ đề tiếng Việt.

Video gốc (không có phụ đề tiếng Việt): https://www.youtube.com/live/WpIfAeCIFc0

Thông tin thêm

Đào Tạo Toàn Diện cho Hơn 140.000 Nhà Phát Triển

Khóa học Generative AI 5 ngày của Google không chỉ là một chuỗi bài giảng đơn thuần. Nó còn là một hành trình học tập toàn diện. Khóa học được thiết kế cẩn thận. Nhằm cung cấp kiến thức chuyên sâu về AI tạo sinh. Với số lượng hơn 140.000 nhà phát triển đã đăng ký tham gia. Đây là một trong những sự kiện quan trọng nhất từng được tổ chức cho các nhà phát triển.

Khóa học đã được thiết kế tinh tế. Kết hợp giữa lý thuyết, thực hành và tương tác cộng đồng. Nhằm giúp những người tham gia có được hiểu biết vững chắc về Gen AI. Từ cơ bản đến nâng cao.

Mỗi ngày trong khóa học đều tập trung vào một chủ đề cụ thể. Nhằm mang đến cho người học góc nhìn toàn diện về công nghệ AI tạo sinh.

  1. Ngày 1 khám phá về Các Mô hình Nền tảng và Kỹ thuật Prompt;
  2. Ngày 2 đi sâu vào Embeddings và Vector Stores/Databases;
  3. Ngày 3 tập trung vào Generative AI Agents;
  4. Ngày 4 nghiên cứu về Domain-Specific LLMs;
  5. và cuối cùng, Ngày 5 giới thiệu về MLOps cho AI tạo sinh.

Cách tiếp cận đa dạng này giúp người học có thể nắm bắt được cả lý thuyết nền tảng. Lẫn các ứng dụng thực tế của AI tạo sinh.

Trải Nghiệm Học Tập Toàn Diện Với Podcast AI, Phòng Thí Nghiệm Mã Và Tương Tác Trực Tiếp Cùng Chuyên Gia

Điểm đặc biệt của khóa học là các bài tập được thiết kế đa dạng, bao gồm podcast được tạo bởi AI (sử dụng NotebookLM), các bài báo trắng (white papers) thông tin do các chuyên gia Google viết, và các phòng thí nghiệm mã (code labs) để người học có thể trải nghiệm thực tế với Gemini API và các công cụ khác. Người học cũng có cơ hội tham gia vào các buổi phát trực tiếp với các khách mời chuyên gia từ Google, nơi họ có thể đặt câu hỏi và tương tác với những người tạo ra khóa học. Đây là cơ hội quý báu để đi sâu hơn vào các chủ đề chuyên đề và hiểu rõ hơn về ứng dụng của AI tạo sinh.

Ngoài ra, khóa học còn cung cấp một kênh Discord được hỗ trợ tích cực bởi các nhân viên Google, tạo ra một không gian cộng đồng sôi động để trao đổi kiến thức và chia sẻ trải nghiệm. Các phòng thí nghiệm mã trên Kaggle cho phép người tham gia thử nghiệm với các kỹ thuật và công cụ AI tạo sinh khác nhau, bao gồm Gemini API, Embeddings, công cụ mã nguồn mở như Langraph cũng như Vertex AI. Đối với những ai đã bỏ lỡ khóa học trực tiếp, một số nội dung phổ biến nhất đã được điều chỉnh thành định dạng tự học và có sẵn dưới dạng Kaggle Learn Guide, giúp mọi người vẫn có thể tiếp cận với kiến thức quý giá này

Danh sách tham khảo

[1] 5-Day Gen AI Intensive Course with Google Learn Guide – Kaggle
[2] Google and Kaggle launch five-day intensive Generative AI course
[3] Kaggle’s 5-Day Gen AI Intensive Course

Continue Reading

Công nghệ

AI Cách Mạng: Khởi Nghiệp Công Nghệ Tương Lai Ngay

Ông Lee cho biết: “Nếu thuộc thế hệ trước, chúng tôi dễ dàng có tới 200 nhân viên. Chúng tôi có cơ hội để suy nghĩ lại về điều đó, về cơ bản là viết lại kịch bản”.

Published

on

Khởi nghiệp AI đang định hình tương lai kinh doanh. Với sức mạnh công nghệ, startup AI giải phóng tiềm năng sáng tạo, tối ưu hóa quy trình và mở ra những cơ hội kinh doanh chưa từng có trong kỷ nguyên số.

DeepSeek đang tạo ra một bước ngoặt mới cho Thung lũng Silicon.

 Hầu như ngày nào, doanh nhân Grant Lee cũng được các nhà đầu tư thuyết phục xuống tiền. Một số người thậm chí còn gửi cho ông và những người đồng sáng lập khác nhiều giỏ quà đắt đỏ để lấy lòng. 

Ông Lee, 41 tuổi, trước đây đã giúp thành lập một công ty khởi nghiệp AI có tên Gamma.  Giống như nhiều startup trẻ khác ở Thung lũng Silicon, Gamma theo đuổi một chiến lược mới: sử dụng các công cụ trí tuệ nhân tạo để tăng năng suất của nhân viên, từ dịch vụ khách hàng, tiếp thị đến mã hóa và nghiên cứu.

Điều đó có nghĩa là Gamma không cần thêm tiền mặt nữa, ông Lee cho biết. Công ty của ông chỉ tuyển dụng 28 người cũng có thể tạo ra hàng chục triệu USD doanh thu định kỳ hàng năm với gần 50 triệu người dùng. Gamma cũng có lãi.

Ông Lee cho biết: “Nếu thuộc thế hệ trước, chúng tôi dễ dàng có tới 200 nhân viên. Chúng tôi có cơ hội để suy nghĩ lại về điều đó, về cơ bản là viết lại kịch bản”.

Mô hình Thung lũng Silicon cũ chỉ ra rằng các công ty khởi nghiệp nên huy động một khoản tiền lớn từ các nhà đầu tư mạo hiểm, sau đó chi tiền thuê một đội ngũ nhân viên để mở rộng quy mô. Trong khi đó, Gamma vẫn kiếm được tiền và phát triển nhanh chóng dù không cần vốn tài trợ hay số lượng lớn nhân viên.

Những câu chuyện thành công này đã thu hút sự chú ý của Thung lũng Silicon.  Anysphere, một công ty khởi nghiệp tạo ra phần mềm mã hóa Cursor, đạt doanh thu 100 triệu USD trong vòng chưa đầy hai năm với chỉ 20 nhân viên. ElevenLabs, một công ty A.I. công ty khởi nghiệp bằng giọng nói, cũng làm nên kỳ tích tương tự với khoảng 50 nhân sự.

Khả năng A.I. cho phép các công ty khởi nghiệp làm được nhiều việc hơn với ít nhân viên hơn đã dẫn đến những suy đoán hoang đường về tương lai.  Sam Altman, giám đốc điều hành của OpenAI, dự đoán rằng một ngày nào đó có thể có một công ty một người trị giá 1 tỷ USD.

Founder Lee markettimes.vn

Với các công cụ A.I., một số công ty khởi nghiệp hiện đang tuyên bố ngừng tuyển dụng ở một quy mô nhất định. Runway Financial, một công ty phần mềm tài chính, cho biết chỉ tuyển tối đa 100 nhân viên vì mỗi người sẽ tăng năng suất gấp rưỡi. Agency, startup sử dụng A.I. cho dịch vụ khách hàng, cũng có kế hoạch tuyển dụng không quá 100 nhân viên.

“Mục đích là loại bỏ những vai trò không cần thiết”, Elias Torres, người sáng lập Agency, cho biết.

Ý tưởng này được thúc đẩy bởi DeepSeek, công ty khởi nghiệp A.I. của Trung Quốc xây dựng các công cụ trí tuệ nhân tạo với chi phí chỉ bằng một phần nhỏ so với chi phí thông thường. Bước đột phá, được xây dựng trên các công cụ nguồn mở có sẵn miễn phí trực tuyến, đã tạo ra sự bùng nổ của các công ty xây dựng sản phẩm mới giá rẻ. 

“DeepSeek là một bước ngoặt”, Gaurav Jain, một nhà đầu tư tại công ty đầu tư mạo hiểm Afore Capital, đơn vị đã hỗ trợ Gamma, cho biết.  “Chi phí điện toán sẽ giảm rất, rất nhanh, rất nhanh”

Ông Jain so sánh các công ty khởi nghiệp A.I. mới với làn sóng cuối những năm 2000, sau khi Amazon bắt đầu cung cấp các dịch vụ điện toán đám mây giá rẻ. Điều đó đã làm giảm chi phí thành lập công ty, dẫn đến một loạt các công ty khởi nghiệp mới có thể được xây dựng với chi phí rẻ. 

Trước cơn sốt A.I. này, các công ty khởi nghiệp thường đốt 1 triệu USD để đạt được doanh thu 1 triệu USD. Bây giờ, để đạt được doanh thu 1 triệu USD, chi phí chỉ bằng 1/5 và cuối cùng có thể giảm xuống còn 1/10, theo phân tích của Afore đối với 200 công ty khởi nghiệp.

Ông Jain cho biết: “Lần này, chúng tôi đang tự động hóa con người chứ không chỉ tự động hóa các trung tâm dữ liệu”.

Tuy nhiên, nếu các công ty khởi nghiệp vẫn có thể có lãi mà không cần chi nhiều tiền, điều đó có thể trở thành vấn đề lớn đối với các nhà đầu tư mạo hiểm, những người phân bổ hàng chục tỷ USD để đầu tư vào các công ty khởi nghiệp A.I. Năm ngoái, các công ty A.I. đã huy động được 97 tỷ USD tiền tài trợ, chiếm 46% tổng số tiền đầu tư mạo hiểm tại Mỹ, theo PitchBook.

“Vốn đầu tư mạo hiểm chỉ hiệu quả nếu bạn rót tiền vào những người chiến thắng”, Terrence Rohan, một nhà đầu tư của Quỹ Otherwise, tập trung vào các công ty khởi nghiệp rất trẻ, cho biết.

“Nếu người chiến thắng trong tương lai cần ít tiền hơn, không biết dòng vốn đầu tư mạo hiểm sẽ ra sao?”.

Hiện tại, các nhà đầu tư vẫn tiếp tục đấu tranh để đầu tư vào các công ty đang phát triển mạnh nhất, nhiều công ty trong số đó không cần thêm tiền. Một số nhà đầu tư lạc quan rằng hiệu quả do A.I. thúc đẩy sẽ thôi thúc các doanh nhân thành lập nhiều công ty hơn, dẫn đến nhiều cơ hội đầu tư hơn. Họ hy vọng khi các công ty khởi nghiệp đạt đến một quy mô nhất định, họ sẽ áp dụng mô hình cũ là các nhóm lớn và tiền lớn.

Quay trở lại với Gamma.

Ông Lee cho biết ông đang có kế hoạch tăng gấp đôi lực lượng lao động trong năm nay lên 60, tuyển dụng cho bộ phận thiết kế, kỹ thuật và bán hàng.  Nhân sự phải có kiến ​​thức tổng quát có thể thực hiện nhiều nhiệm vụ thay vì một việc như trước đây. Theo ông Lee, mô hình hiệu quả với AI đã giúp giải phóng thời gian.  Bây giờ ông chỉ việc tập trung tư vấn khách hàng và cải thiện sản phẩm. 

“Đó thực sự là giấc mơ của mọi nhà sáng lập”, ông Lee nói.

Theo: Financial Times, WSJ

Hashtags: #StartupAI #CongNgheKhoiNghiep #KinhDoanhCongNghe #AIKhaiPha #StartupCongNghe

Nguồn: markettimes.vn / 21-Feb-2025 / https://markettimes.vn/deepseek-khoi-phat-ky-nguyen-startup-gia-re-chi-20-nhan-su-cung-tao-ra-hang-chuc-trieu-usd-cac-cong-ty-khong-con-khat-tien-mat-77486.html

Continue Reading

Trending